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I INTRODUCTION

In any thermal detector system for long wavelength infrared radiation, there are two distinct and
separable functions which control the sensitivity.

(@) The thermal conversion efficiency i.e. the manner in which the absorbing detector chip
converts the chopped IR radiation field into a fluctuating temperature.

(b) The thermometric sensing function of the element which converts the generated temperature
change into as readable electrical or optical signal.

This relationship is depicted in equation 1.

@ (b)
RESPONSIVITY = Induced Temperaturature X Thermometric sensitivity
Change at the element. of the element. 1)

Earlier detection systems have focused primarily upon the function (b), developing systems such as
the pyroelectric detector which have quite exceptional thermometric conversion efficiency, but which lead
inevitably in the associated interconnect systems to very poor thermal conversion efficiency.

In the pyro-optic system we focus on an interrogation system using visible light which needs to
make no thermal contact with the sample. The detection element can be given radiation limited boundary
conditions by mounting on a transparent acrogel substrate, so that the thermal capacity of the element can
be greatly reduced. Since the temperature signal is now vastly enhanced, the lower thermometric
efficiency of the reflective mode optical ellipsometric interrogation can be tolerated.

In this initial study, we calculate first the thermal conversion efficiency for a model detecting
element of the size required for a single pixel in a long wavelength IR imager. The thermal mass is taken
down to the level permitted by the very low thermal contact with the environment afforded by the
mounting upon a critically dehydrated transparent acrogel substrate. For such a very low thermal mass
element, the RMS thermal fluctuation noise will clearly be strongly enhanced, however it is shown that for
the conditions chosen to optimize the pyrooptic system the noise signal is still two orders of magnitude
below the expected signal level.

For the ellipsometric optical detection scheme it is very difficult to derive theoretically the limiting
noise floor. Thus, the emphasis of the present study has been to demonstrate experimentally using a
controlled AC temperature source, that the level of signal which will be achieved by the enhanced thermal
conversion can be clearly discerned above the practical instrumental noise floor in the optical detection
system, if the best pyroelectric crystal is used. We believe that this is a more stringent test of feasibility in
view of the complexity of any possible theoretical derivation.




2. THERMAL CONSIDERATIONS

For a uniform thermal scene illuminating a minimally heat sunk detector element through a
sinusoidal chopper working at a frequency ® focused by an objective lens of F number I. The time
dependent power reading the detector is given by

P= !;3 cos wt AT (2)

ATs s the difference in temperature between the scene and the chopper.
Io is the scene contrast in f/1 (for the full 8-14 i band I, ~ 5.10"3 W/cm?).

The temperature rise at the detector ATy is given by

LoATs
2f2med

where d is the detector thickness and ¢ the volume specific heat of the detector.
For a chopping frequency of 25Hz, a detector thickness of 0.1y meters and a volume specific heat
of 2.2 Joules/cm3°C (as for SbSI) using f/1 optics

ATy =

sin wt. 3)

%Tl’ ~ 15102, )

Ts
Thus to discriminate a 0.1°C change at the object plane, the imager must be capable of resolving a
1.5-10-3°C temperature change at the detector chip.
For the very thin detector chip acting as a single pixel of a thermal imaging system one must worry
that the ultra high thermal conversion efficiency will be accompanied with high RMS thermal noise.
Taking the simple expression for the uncorrelated temperature fluctuationsOu

kT,y2
2-%la®
O = cbA )

where k is the Boltzmann constant.
Ta the detector element temperature (290°K).
¢ the volume specific heat.
A the elenient area.

For a pixel element 50 x 50 p meters, 0.1 4 meter thick with C = 2.2. J/cm3°C working at room
temperature (290°K) the RMS 0 is




0. =3.4-105°C. (6)

Almost two full orders of magnitude below the temperature change generated in the detector at the
0.1°C change in the scene.

3. THERMOMETRIC SENSITIVITY

In our earlier studied bismuth vanadiate BiVO4, molybdenum disulphate MoS2 and antimony
sulphur ioxide SbSI were chosen as candidate thermo-optic crystals and the sensitivity of the reflectance
coefficient to a small AC temperature modulation was evaluated using null ellipsometry to chose the
optimum optical interrogation wavelength (figures 1 and 2). SbSI was found in these studies to be the
most sensitive material and all subsequent experiments have been performed on this material both in single
crystal and in thin film forms.

In figure 2, the function generator supplies a low frequency AC signal to the power amplifier
which drives the AC temperature change in the thermoelectric element. A DC bias was used to set the
background temperature. The SbSI single crystals were cemented directly to the thermoelectric using a
heat conductive cement.

The change in the reflectance coefficient with temperature was measured by converting the output
current of the photomultiplier to voltage, and amplifying in an amplifier phase locked to the driving power
amplifier signal. Results on the single crystal samples were as follows:

1. The maximum change in reflectance coefficient occurs for optical wavelengths in the range 580 to
633 nm at ~18.4°C(fig. 3).

2. There is a linear dependence of the 633 nm reflectance at 17.5°C as a function of the AC temperature
(fig. 4).

3. For the signal at 0.02°C which was the minimum that could be read on the thermocouple, noise in the
optical system was not detectable. Even for an increase of x25 in the gain the noise was still much less
than the optical signal, i.c. the signal to noise ratio at 0.02°C is better than 25:1.

4. The signal to noise ratio suggests that levels of 10-3°C will be observable above noise as is required by
the thermal calculations.




Recently this extrapolation has been confirmed by improving the photon detector, cooling the
photomultiplier tube, and by improving the sensitivity of the thermocouple detector which monitors the
thermoelectric temperature rise.

Figure 6 shows the extended linear range of the reflectance response in SbSI at 16.3°C, 633 nm
and 3.2 Hz chopping frequency.

Figure 7 shows the reflectance response under a temperature modulation of 4.10-3°C and Fig. 8
shows the noise level with the modulation set at 0°C. Clearly a signal to noise ratio of order 2 exists for
4.10-3°C.

Figure 9 and Table I summarize these measurements together with earlier data taken on Mo$S> and
BiVOy4 crystals.

To take the system closer to the requirements for the pyro-optic system we have made preliminary
studies on thin films of SbSI deposited on several potential substrates including GaAs, mica and glass.

Figures 10-12 show the results for films on mica, and figures 13 and 14 show the results on glass
and on GaAs respectively.

The overall summary for both single crystals and films is given in Table II. If we use the
extrapolation to arrive at limiting sensitivity from figures 11 and 12 we expect that the films also will be
able to read temperatures ~10-3°C.

4, SUMMARY AND CONCLUSIONS

From a simple consideration of the thermal conversation efficiency which can be realized in the non
contact pyro-optic system it is shown that for f/1 optics a scene temperature change of 0.1°C will realize a
change at the detector of 10-3°C for a detector thickness of 0.1 p meter, chopping frequency of 25 Hz.

For a simple pixel element 50u x SOu % 0.1y the RMS thermal noise limit in SbSI is calculated to
be 3.5 - 10-5°C well below the expected signal level.

Using a very simple ellipsometric setup working into a photomultiplier detector it is shown that for
SbSI single crystals and thin films, temperature oscillations of 10-3°C can be detected above noise level.
Clearly many additional steps are needed to realize first a point detector, then an IR imaging system. We
believe however that under highly constrained budget conditions we have been able to accomplish three of
the key steps towards this realization.
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Table 1

Summary of the experimental results where Amax

is the wavelength of maximum sensitivity, A<n>/AT is the
temperature derivative of the refractive index and ATmijp is

the minimum temperature detected by monitoring the
reflectance coefficient.
Temperatuirg
Material | Amax (nm) ASA-"I];Z(°C")i ATmin(°C)| Range (°C)
SbSI 633 7x10-2 10-3 15 to 19
MoS,; 670 -10-2 10-2  }100 to 100
BiVO4 600 -2x10-3 10-2 20 to 240
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Table 2

Summary of the experimental results, for single crystal and thin

films.
Temperature

) A<n> | . .
Material A(nm) AT cch ATmin(CC) Range (°C)
SbSI 633 7 x 10-2 103 15t0 19
SbSI 600 3.3 x 103 2.1 x 10-2 16 t0 20
(on GaAs)
SbSI 600 10-2 16 t0 20
(on glass)
SbSI 600 0.7 x 10-2 ~16
(on thin glass)
SbSI 600 1.1 x 10-2 ~16




